RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2018

SECOND YEAR (BATCH 2016-19)

Date : 23/05/2018 Time : 11.00 am – 2.00 pm **CHEMISTRY** (General) Paper : IV

Full Marks : 75

[Use one Answer Book for each Group]

Group-A

<u>Unit I</u>

	An	swer <u>any one</u> question:	×15]
1.	a)	Outline the cyanide process for extraction of silver. Give relevant equations.	4
	b)	Explain the followings:	
		(i) The first ionisation energy of gold is higher than silver.	
		(ii) $K_3 \Big[Cu (CN)_4 \Big]$ is colourless but $\Big[Cu (NH_3)_4 \Big] SO_4$ is deep blue.	2+2
	c)	Depict the principle for the preparation of KMnO ₄ from pyrolusite. Explain with equation what	
		happens when KMnO ₄ reacts with oxalic acid in acid medium.	3+1
	d)	3.0 gm of an Iron ore is dissolved in acid at reducing condition and the volume is made upto	
		250 ml. 25 cc of the solution is pipetted out and titrated with $\left(\frac{N}{20}\right)$ K ₂ Cr ₂ O ₇ using BDS as	
		indicator and the titre value is 12.6 cc. Calculate the % of Fe in the ore. (At. Wt. of $Fe = 55.58$	
		gm).	3
_			-
2.	a)	Write the appropriate reactions for the preparation of $K_2Cr_2O_7$ from chromite.	3
	b)	100 ml of hard water is titrated with $\frac{N}{50}$ EDTA using pH 10 buffer and EBT as indicator and the	
		titre value is 35.5 ml. Calculate the hardness of water in terms of CaCO ₃ .	3
	c)	What is metal ion indicator? Explain its role in complexometric titration.	1+3
	d)	Explain the following giving balanced equations – A blue solution of copper sulphate turns brown on addition of potassium iodide at $pH \sim 3$ to 4. This brown colour is discharged by sodium	
		thiosulphate and on adding excess of reagent a white solid settles down.	3
	e)	How is potassium ferrocyanide prepared?	2
		I nit II	
	Δn	swer any one question:	×101
3	a) 1111	State and explain 'Schulze-Hardy rule' for the coagulation of colloids?	3
5.	u) h)	An excess amount of a sparingly soluble salt KHTa is added to water	5
	0)	(i) Write down the form of the equilibrium that is formed	
		 (i) White down the form of the equinoritant that is formed. (ii) Define the terms activity and concentration solubility product in this context. 	2 ± 2
		(ii) Define the terms activity and concentration solubility product in this context. The solubility of calcium fluorida in water at 10° C is 2.05×10^{-4} male per liter. Calculate its	
	0)	solubility product with unit if any.	2+1
4.	a)	Write short notes on	
		(i) Brownian motion (ii) dialysis	2+2
	b)	You have a colloidial solution where the colloid particles are negatively charged w.r.t the dispersion medium. If 0.2 mole NaCl completely sediments the colloid how much Al ₂ (SO ₄) ₂ will	
		be required to do the same.	2
	c)	Explain the term "Electrophoresis".	2

c) Explain the term "Electrophoresis".

(1)

(2)

d) When H_2S is passed through a solution of Cu^{+2} and Zn^{+2} in presence of HCl only CuS is precipitated — Explain.

Group-B <u>Unit I</u>

Answer any one question:

- 5. a) Write how phenol may be prepared from Cumene?
 - b) Convert the following:

(ii)

c)

 $CH_3MgI \longrightarrow CH_3CO_2H$

Write down the products of the following reactions:

- d) Ar–NH₂ (Ar = aromatic group) forms diazonium salts but R–CH₂NH₂ (R = aliphatic group) does not. Explain.
- e) Complete the following reaction (no mechanism required):

f) Compare the acid strength for the following pair of molecules:
(i) CH₃CO₂H and Cl₃CCO₂H
(ii) CH₃OH and PhOH

6. a) Arrange the following molecules in increasing order of acidity with proper explanation:

- b) Write short note (any two):
 - (i) Kolbe-Schmitt Reaction

2

 2×2

1½ × 2

3

 2×2

2

2

2

[1×15]

 2×1

- (ii) Ester hydrolysis (B_{AC}2 mechanism)
- (iii) Fries-Rearrangement
- What will be the action of sodium nitrite and dilute hydrochloric acid in cold condition c) $(0^{o} \sim 5^{o}C)$ on the following compounds: (i) Methylamine (ii) Dimethyl amine (iii) Tri methyl amine (iv) Aniline.
- Convert the following: d)

Write down the products of the following reactions: e)

Unit II

	An	iswer <u>any one</u> question:	[1×10]
7.	a)	How will you synthesise alanine by the Strecker's method?	2
	b)	Glucose reduces Tollen's reagent but sucrose does not. Explain.	2
	c)	Define the following terms:	2×1
		(i) Zwitter ions (ii) isoelectric point.	
	d)	Complete the following conversion:	3
		aldohexose → aldopentose	
	e)	Predict the product in the following reaction:	1
		D-glucose $\xrightarrow{Br_2}_{H_2O}$	

8.	a)	Write short note on (any two):	2×2
		(i) Osazone formation (ii) Kiliani Fischer synthesis (iii) Mutarotation of glucose	
	b)	Write the structure of the following compounds as mentioned:	2
		(i) L-alanine (Fischer projection)	
		(ii) Methyl-α-D-glucopyranoside (Haworth projection)	
	c)	Convert the following:	2
		O − NH → Glycine	

d) How will you prove by chemical reaction that a Glucose molecule contains: (i) -CHO group and (ii) five hydroxyl groups.

2

 2×2

2

F1~101

2

Group-C <u>Unit I</u>

	An	swer <u>any one</u> question: [1]	×12]
9.	a)	State Le Chatelier's principle and apply it to predict the effect of increase in T and P on the yield of SO ₃ in the following reaction:	
		$2SO_2(g) + O_2(g) = 2SO_3(g) + Q$	5
	b)	"The efficiency of heat engine cannot be 1."– Justify.	2
	c)	What are the conditions of spontaneous processes from the thermodynamic point of view?	
		Comment on the point of view of Gibbs free energy and entropy.	3
	d)	Why the entropy can be treated as state function?	2
10.	a)	Write down the second law of thermodynamics from the point of direction.	2
	b)	Proof that $\Delta G = \Delta H - T \Delta S$	3
	c)	Show that $K_p = K_c (RT)^{\Delta n}$; where Δn is the change in the no. of moles in a chemical reaction.	2
	d)	(i) The equilibrium constant for the reaction	
		$2\mathrm{CO}_2 + \mathrm{O}_2 = 2\mathrm{CO}_2$	
		is K_1 and that for the reaction	
		$H_2 + \frac{1}{2}O_2 = H_2O$	
		is K_2 . Find K_p for the reaction	
		$H_2 + CO_2 = H_2O + CO$	
		All in gaseous state.	3
		(ii) The free energy change also leads to the same result. Can you confirm it? How?	2

<u>Unit II</u>

	An	swer any one question:	[1×13]
11.	a)	State laws on osmotic pressure of dilute solution and derive Vant Hoff equation.	4
	b)	Write short notes on Raoult's law.	2
	c)	"Colligative properties are intensive." Comment.	3
	d)	What do you mean by azotropic and eutectic mixture? Give some examples.	3
	e)	What is triple point temp.?	1
12.	a)	Which of the following aqueous solutions has highest freezing point depression and why?	
		(i) 0.1 (M) glucose (ii) 0.1 (M) FeCl ₃ (iii) 0.1 (M) KCl.	3
	b)	What is van't Hoff factor 'i'?	2
	c)	Find the degrees of freedom in the reaction mixture: $CaCO_3(s) = CaO(s) + CO_2(g)$	2
	d)	Draw the phase diagram of H_2O and explain the nature of curve.	3
	e)	When 3.33 gm urea is dissolved in 250 gm water, the freezing point of water is depressed by 0.413° C. Calculate the molecular wt. of urea. Cryoscopic constant of water is given as 1.86° .	у 3

 $- \times -$